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A B S T R A C T

This article evaluates the current gaps around the impact of post-manufacturing processes on the product
qualities of protein-based biologics, with a focus on user centricity. It includes the evaluation of the regula-
tory guidance available, describes a collection of scientific literature and case studies to showcase the impact
of post-manufacturing stresses on product and dosing solution quality. It also outlines the complexity of clin-
ical handling and the need for communication, and alignment between drug providers, healthcare professio-
nals, users, and patients. Regulatory agencies provide clear expectations for drug manufacturing processes,
however, guidance supporting post-product manufacturing handling is less defined and often misaligned.
This is problematic as the pharmaceutical products experience numerous stresses and processes which can
potentially impact drug quality, safety and efficacy. This article aims to stimulate discussion amongst phar-
maceutical developers, health care providers, device manufacturers, and public researchers to improve these
processes. Patients and caregivers’ awareness can be achieved by providing relevant educational material on
pharmaceutical product handling.
© 2024 The Authors. Published by Elsevier Inc. on behalf of American Pharmacists Association. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Glossary / Definitions

Biologics: medicines described as “Biological Medicinal

Product” by the European Medicines Agency or “Biological

Product” by the Food and Drug Administration of the United

States.

Protein-Based Biologics: protein-derived group of

medicines.

Post-manufacturing handling: conditions and processes

of medicinal drug products from the transport to the prepara-

tion of drug product and administration to the patient.

Mechanical stresses: can indicate two different stresses.

(1) Mechanical agitation: describes agitation, vibration, shak-

ing, mixing and other mechanical movements, (2) mechanical

shock: describes fast kinetic events including sudden acceler-

ation/deceleration such as during dropping and falling, cavi-

tation may occur.

Thermal stress: includes all temperature excursions out-

side (above or below) the recommended drug product or pre-

pared dosing solution storage and handling range.

Light exposure and photodegradation: includes situations

where the drug product is exposed to light. Photodegradation

indicates light induced degradation that impact DP quality.
Introduction

Protein-based biologics are a class of biological medicinal prod-
ucts that have rapidly grown in market approvals in the last few dec-
ades, resulting in more than 180 new biopharmaceutical active
ingredients (API) approved for use in the United States and the Euro-
pean Union between 2018 and 2022.1,2 These drug products (DPs)
include modalities such as antibody drug conjugates (ADCs), fusion-
proteins, and monoclonal antibodies (mAbs), the latter representing
more than 50 % of the currently approved products.1,2 Compared to
solid dosage forms of synthetic medicinal products, biologics are typi-
cally more sensitive to stresses such as temperature excursions,
change of state (freezing and thawing), light exposure, and mechani-
cal agitation and shock. Therefore, extensive development is needed
to ensure that the DPs stability has been optimized and that the prod-
uct quality of the final DP is well controlled and characterized. Com-
plex post-manufacturing stresses that the DP may experience during
transportation, distribution, and clinical in-use handling and admin-
istration to patients can impact its quality and potentially affect effi-
cacy and safety.3 This article provides an overview of the global
regulatory guidance available and its limitations to support handling
and administration of the DP, it also highlights the post-manufactur-
ing stresses that products may experience during transport and han-
dling across the supply chain, and finally, focuses on the areas that
should be developed for new investigations.4 This manuscript has
been prepared to educate the audience as a deliverable for the Real-
HOPE working group of the Innovative Medicines Initiative (IMI)
(https://realhope.se): ‘Real-life handling of protein drug products,
exploration, evaluation and education’. The review will be supple-
mented by future research from RealHOPE academics to industry
partners to improve patient safety and increase awareness around
handling and in-use in the form of publications, training materials,
and best-practice guidance for healthcare professionals and patients.

Current Global Regulatory Guidance for the Handling of Post-
Manufacturing DP

Adequate guidance for the post-manufacturing handling of DPs is
critical to ensure product quality and patient safety. Table 15−17
summarizes selected harmonized regulatory guidelines for the prep-
aration, administration and handling of DPs. Many of the regulations
concerning DPs release and stability do not include in-use DPs han-
dling processes in depth and as such, are sometimes addressed
by associative or local organizations instead of regulatory
agencies.18,19 Despite the list of guidelines shown in Table 1, gaps
and challenges have been identified which impact the quality of
the post-manufactured DPs and may increase the complexity of
the testing environment associated with post-manufacturing
transport and in-use.20−22 For example, during transport assess-
ments, the DP manufacturer may define custom tests that mimic
its intended use, following different transport standards such as
ISTA, ASTM or ISO.15,16,23 Furthermore, a complex regulatory land-
scape also arises during clinical in-use handling, where pharma-
cists/healthcare providers (HCP) must follow regulations from
local sites, state pharmacy boards, as well as national licensure or
pharmacopoeia recommendations. Clinical handling practices can
vary widely globally because of potential gaps in regulatory con-
siderations between national health authorities and local agencies,
leaving clinical sites and hospitals in some regions to implement
local practice guidance without a harmonized standard.22 For clini-
cal trials or market license authorization, health authorities
require that the Quality-Investigational Medicinal Product Dossier
(Q-IMPD) section P.3.2 supporting information are shared with
healthcare providers in a site guidance document (also known as
pharmacy manual) or in the Product Information/ Summary of
Product Characteristic (PI/SmPC) sheet which details how the drug
is prepared, handled, and administered. However, the existing
guidance for in-use and compatibility assessment lacks compre-
hensive details and is open for interpretation. When dealing with
handling and preparation, clear instructions and information on
the occupational safety of the DP must be available for professio-
nals. The PI/SmPC for marketed products are often limited, drug-
specific, and cannot go into details on all aspects of the best practi-
ces of handling biologics in general to ensure their stability, includ-
ing occupational safety. Finally, the aforementioned gaps can be
worsened for outpatient care where therapies can be administered
at home and at-times by patients themselves, a practice that has
increased in popularity recently in efforts to bring down health-
care costs and increase patient convenience. Studies have shown
that these environments are less regulated, often resulting in
non-compliance.21,22

RealHOPEWork Packages Tackle Protein-Based Biologics
Products Quality Concerns

RealHOPE is a European Union funded project that works to
ensure patients safety by building knowledge on how to handle pro-
tein drugs better during their whole life cycle (https://realhope.se/).
There are five work packages in the RealHOPE project: SHAPE, GOLD,
HIGH, TEACH and PAGE. SHAPE (Stressful HAndling of Proteins Evalua-
tion) evaluates drug stresses through simulations surrounding the
transport and handling of DPs. GOLD (Guidance Outlining Latest Devel-
opments) designs experiments and develops mitigation strategies to
reduce critical stress factors during clinical handling. HIGH (Handling
Improvement Guidance for Health) provides recommendations on
methods and guidelines to improve clinical handling. TEACH (Tar-
geted Educational Advice at Centers for Healthcare) creates educational
materials for pharmaceutical scientists, pharmacists, healthcare pro-
viders, and patients, based on lessons learned from the other work
packages. PAGE (Project ManAGEment) supports with leadership,
communication, and project management to ensure the success of
the RealHOPE objectives. The data gathered during the project,
including patients and HCP interviews, will be used to help bridge
the gaps in knowledge and communication between the previously

https://realhope.se
https://realhope.se/


Table 1
Regulatory guidelines summary about the development and handling of drug products.

Guideline Section Scope Guidance summary Ref.

ICH Q8 (R2) 2.6 Compatibility Compatibility of the drug product with reconstitution diluents including dilution of prod-
ucts prior to administration.

5

EMEA/CHMP/SWP/28,367/07 5.3 Reliability of small doses Suitability of dosing solution to provide the intended dose. 6

EMA/CPMP/QWP/2934/99 N/A In-use stability Safety of medicinal products in multidose containers which, due to repeated opening and
closing, may pose a risk to its content.

7

ICH M4Q 3.2.P.2.6 Compatibility Compatibility testing of drug product with reconstitution diluent(s) or dosage and admin-
istration devices.

8

ICH M4Q 3.2.P.8.1 Stability summary Common format for the summary of stability, in-use storage conditions, and shelf-life. 8

ICH Q1 B Photostability Light testing as an integral part of stress testing. 9

ICH Q5 C Stability testing Stability data considering reconstitution, dilution, storage, and stress conditions. 10

USP 787/ 788 N/A Subvisible particles Subvisible particles limits for therapeutic protein injections. 11,12

USP 797 N/A Microbial contamination Standards for preparing compounded sterile medications. 13

ISMP Guidelines N/A Sterility preparations Sterile compounding and use of sterile compounding technology. 14

ASTM
D4169−22

N/A Transportation Evaluation of DP shipping units to withstand the distribution environment. 15

ISTA 3-Series 3A-3L Transportation Laboratory simulation of the damage-producing motions, forces, conditions, and sequen-
ces of transport.

16

ICH Q1 F Storage conditions Storage conditions for stability testing in countries located in Climatic Zones III and IV. 17

ASTM: American Society for Testing and Materials; EMA: European Medicines Agency; ICH: International Council for Harmonisation of Technical Requirements for Pharmaceuticals
for Human Use; USP: United States Pharmacopeia; Ref: References; ISMP: Institute for Safe Medication Practices.
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cited stakeholders and aid the development of more robust DPs han-
dling procedures to support a safe and efficient use of these medica-
tions for patients.

This paper addresses some of work package SHAPE goals: 1) gen-
erating a better understanding of post-manufacturing risk on biologi-
cal DPs, 2) promoting clear guidance and communication in regard to
DPs transport, preparation, and administration, and 3) ensuring that
pharmacists, patients and caregivers and other HCP have access to
relevant and regulated medication instructions and documents pro-
vided by the DPs manufacturers. These objectives are achieved by
improving the knowledge database available to HCP and patients,
updating training materials, and creating, adopting, and disseminat-
ing novel training methods (i.e. mobile applications, webinars, online
media and creative manuals) where applicable. Other SHAPE goals
not addressed here include development of tools and methods for
simulation of real-life events during DP handling that mimic the
effects on DP quality and development of new technologies for the
mitigation of critical stress factors and safer handling of protein drugs
at hospital pharmacies.
Post-Manufacturing Stresses: Getting Biological DP to the End
Users

Once biological DPs are released from the manufacturing site, they
leave a controlled cGMP/GDP environment and are subjected to
transportation, storage, distribution, preparation, and administration.
Numerous individuals are involved through these processes, includ-
ing distributors and HCP (such as physicians, pharmacists, nurses and
caregivers). Studies have shown that knowledge gaps can exist
despite professional training and instructions.22,24 Thus, biological
medicines can be exposed to stressors that could influence their qual-
ity and efficacy which could potentially lead to adverse effects (e.g.,
immunological reactions) or loss of therapeutic potency.25,26 Addi-
tionally, in the event of an unacceptable impact on product quality,
the DP is ultimately discarded, causing wastage and negatively
impacting economic and sustainability outcomes.27 Fig. 1 summa-
rizes the workflow of the DPs post-manufacturing supply chain, asso-
ciated stresses, impact on product quality, stakeholders and
participants involved behind each step. Next sections describe stake-
holders involved, influence of potential stressors encountered after
DPs manufacturing associated risks, and potential strategies for risk
mitigation. Furthermore, Table 2 summarizes list of published studies
in relation to the impact of relevant stresses encountered.26,28−60

While there are significant academic interests to explore DPs
quality attributes and stability to improve patients care, there is low
adherence to manufacturer recommendations due to potential chal-
lenges of performing meaningful and applicable research without
inputs from industry partners.61 These challenges can include the
lack of validated analytical methods and instruments during drug
characterization, an incomplete panel of analytical methods to get a
full picture of the DPs behaviour as done in the industry and required
by regulators, the unavailability of well-characterized information
associated with the material tested, and a difference standard in
experimental quality in a regulated, compliance drug manufacturing
(cGMP) setting vs. a general hospital or laboratory. Thus, there is a
need to implement patient centric changes through a collaboration
between researchers, drug manufacturers and regulators so we can
learn from one another and improve our processes.

Mechanical Stresses

Mechanical stresses are a broad category of physical perturbations
such as agitation, stirring, and cavitation, typically involved when the
DP is in motion. Potential DP degradation pathways include fragmen-
tation, aggregation, precipitation, increases in counts and size of sub-
visible and visible particles, formation of higher order complexes and
unfolded structures.33,37,40,42 Certain events and potential interfacial
stresses can exacerbate the negative impact on DP quality. For exam-
ple, dropping (even from low heights) during normal shipping can
cause rapid acceleration and deceleration of the DP, thus causing the
formation of small vapor-filled cavities (or bubbles) in solution, a
phenomenon known as cavitation. The subsequent implosion of
these air bubbles can initiate particle formation,37,42 as observed dur-
ing a transport simulation study of Ustekinumab stored at 2−8 °C
during a 48-hour, 8000 km, journey across the United States. The
same study noted that mechanical transport can have cumulative
effects as different types of vibrations, shocks, agitations can occur
from the various modes of transportation, ranging from the rapid
acceleration on a flight to the vibrations and shocks of road travel,
and the drops at a loading dock.40 This type of shipping validation
study is a requirement for commercial medicine application to ensure
DPs developers provide well characterized modes of transports while
ensuring product quality.62



Figure 1. Process flow for post-release of DPs from a controlled environment, after cGMP manufacturing, to the end users, healthcare providers and/or patients. Potential DPs qual-
ity altering events for each process step are shown in the figure and include 1) mechanical stresses (i.e., agitation, stirring, and cavitation, 2) temperature excursions and thermal
stresses, 3) ambient and extreme light exposure, 4) clinical compounding including dosing solution preparation and administration. Created with BioRender.com.
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Besides long-distance journeys, short distance transport within
hospitals, using for example pneumatic tube systems (PTS), may also
lead to unintended product risks and impact patient safety.63−68

Although some guidance on PTS transports is available (i.e., from the
Institute for Safe Medication Practices, ISMP), there are no harmo-
nized recommendations and these processes often follow local site
practices, as stated in an earlier section. Since PDs degradation path-
ways depend on numerous factors, including product, formulation,
and packaging, generic risk analyses are not sufficient to model these
complex stresses. It is therefore recommended that representative
simulated transport studies, capturing the associated mechanical
stress, as measured by digital measuring devices, should drive a data-
centric approach to determine product risks and mitigation strate-
gies. Furthermore, the use of mechanical stress monitoring and docu-
mentation technologies (i.e., sensors, smart devices, distributors/
HCP/patients’ electronic reports) to track and monitor DPs and dosing
solution transport would benefit patient safety as studies have shown
that DPs undergoing non-evident mechanical stress (for example,
that do not result in visible damage to the primary or secondary con-
tainers) are often administered to patients.42 The application of these
monitoring technologies should be encouraged to deduce the extent
and frequency of these stresses.

Temperature Excursion and Thermal Stress

A validated shipping process and a well-established cold chain is
typically required to keep the DP within the temperature specifica-
tions range throughout its post-manufacturing journey. Nevertheless,
unexpected temperature excursions, both above and below the speci-
fied range, can impact DP quality.24,28 Examples of potential degrada-
tions from thermal stress include aggregation, an increase in
subvisible and visible particle and loss of potency.22,24,28,45,69 Cold
chain breaches can also occur when the DP is directly received by
patients, with one study showing that compliance for proper temper-
ature storage of medications for rheumatic diseases was only at
6.7 %.22 Similar studies, focusing on DP in prefilled syringes (PFS),
confirmed low rates of <20 % in patient compliance for proper DP
storage temperature.70,71 These studies conclude that improper tem-
perature storage is often unintentional and can be improved by
patient education, the awareness of proper maintenance, and the use
of controlled-temperature technology (i.e., temperature monitoring
devices).27,72

Light Exposure and Photodegradation

Light exposure can induce photodegradation of the DP or of the
dosing solution by direct and indirect mechanisms. The former
includes direct interactions with the active pharmaceutical ingre-
dients. The latter includes interactions with photosensitive compo-
nents such as buffer salts, surfactants, and other excipients.52,73,74

Photo-induced degradation can impact both physical and chemical
quality attributes and lead to aggregation, fragmentation, oxidation,
deamidation, and loss of potency.49,74 Furthermore, changes in visual
appearance including discoloration have been observed.75 More
insights about DP photodegradation mechanisms can be found in the
published literature.74,76 The exposure to different sources and light
intensities has been shown to correlate with the extent of photode-
gradation, with exposure to natural light (i.e., sunlight) being usually
more harmful than indoor light exposure.50 To avoid photo-induced
degradation, changes to the DP formulation can be made to include
potentially photo-protective excipients.74 In addition, alterations to
packaging can be used to protect from light exposure including the
use of both primary and secondary packaging made of dark amber
glass and cardboard boxes, respectively. However, during end-user
handling (such as with patients or HCPs), the DP is taken out from its
protective packaging and could inadvertently be exposed to ambient



Table 2
Summary of published studies investigating the impact of stress factors on DP stability.

Reference
Molecule name (manufacturer)
[Concentration] Stressors description Stability outcomes description

Main stressors
investigated

Henkel et al. (2020)28 Lyophilized Tenecteplase Vials containing 50 mg lyophilized drug are stored at 4.0 °C,
35.5 °C, or 44.9 °C for 8 h prior to reconstitution

Exposure to elevated temperature negatively affect lyoph-
ilized tenecteplase stability and pharmacological effi-
cacy.

Temperature

Chandler et al. (2008)29 Regular Insulin and NPH Insulin
(Novolin R, Novo Nordisk, Prince-
ton, NJ)

[70 % isophane/30 % regular insulin]

Stored in insulated transport containers from 22 °C to 45 °C
(summer) and from �10 °C to 18 °C (winter) transit condi-
tions for 24 h to 120 h.

All insulin types studied met the USP specifications and
retained product stability.

Temperature

Davis et al. (2020)30 Ebolavirus vaccine ERVEBO Thawed from �80 °C to room temperature and placed on a hor-
izontal orbital plate shaker at 200 rpm, 2−8 °C, for 1, 3 and 7
days.

No impact on drug product potency. Mechanical stress

Sharrow et al. (2012)31 Insulin Lispro Delivery of different insulin doses from continuous subcutane-
ous insulin infusion devices at 37 °C and 100 rpm over 14
days.

No insulin precipitation, no device occlusion. The drug met
the USP criteria for potency.

Temperature
Mechanical stress

Senesh et al. (2010)32 Humalog� (insulin lispro, Eli Lilly)
Novolog�/Novorapid� (insulin
aspart, Novo Nordisk)

Apidra� (insulin glulisine, Sanofi-
aventis).

Tested inside SoloTM MicroPump (Medingo Ltd) at 37 °C, 40 %
relative humidity, 35 rpm at different pump delivery rate for
6 days.

Insulin analogs lispro, aspart, and glulisine maintained
physical, chemical, and biological properties.

Temperature
Mechanical stress

Fradkin et al. (2009)26 rhGH Nordiflex1 (Novo Nordisk1,
Bagsvaerd, Denmark) [1 mg/ml]

rhGH Saizen1 (Serono, Rockland, MA)
[1 mg/ml]

A. After reconstitution, vials were shaken at 1000 rpm for 72 h
at room temperature.

B. After reconstitution, vials underwent 20 freeze-thaw cycles.

Stressor dependent levels of aggregation in both products.
Only one of the two aggregated drugs results to be
immunogenic in mice.

Temperature
Mechanical stress

Kiese et al. (2008)33 mAb (IgG1)
[10 mg/ml]

200 rpm at 5 °C or 25 °C with different headspace and different
polysorbate 20 concentrations up to 168 h.

Formation of visible particles and soluble aggregates pro-
moted by headspace and absence of surfactant.

Temperature
Mechanical stress

Senstius et al. (2007)34 Insulin Aspart Worst case real-life scenario simulation. Insulin shaken at 30
oscillations/min and 37 °C for 7 days while stored in a Med-
tronic (Northridge, CA) MiniMed� 508 pump.

No impact on stability and potency Temperature
Mechanical stress

Senstius et al. (2007)35 Insulin Aspart
Insulin Glulisine

Insulin shaken at 30 oscillations/min and 37 °C for 10 days
while stored in a Medtronic MiniMed� 508 pump, with dif-
ferent injection flow-rate.

Both Insulin Aspart and Glulisine retained a high propor-
tion of native insulin. Some differences in stability
between the two insulin type.

Temperature
Mechanical stress

De Felippis et al. (2006)36 Insulin Lispro Insulin shaken at 100 rpm and 37 °C for 7 days while stored in
different continuous subcutaneous insulin infusion devices.

Increase in high molecular weight species but potency and
aggregates met specifications limits.

Temperature
Mechanical stress

Torisu et al. (2017)37 humanized immunoglobulin G1
(IgG1)

[0.9 mg/ml]

Shaking and mechanical shock. Aggregation rate under combination stress was much
faster than under shaking stress alone.

Mechanical stress

Guo et al. (2016)38 Vaccine suspension in syringes
[0.5 ml of suspension in 1 ml syrin-
ges]

A. Simulated shipping study with vibration table employing the
International Safe Transit Association 3A profile.

B. Actual Shipping: from the manufacturing site to the testing
site.

Product quality and physical properties not affected. Mechanical stress

Jiao et al. (2020)39 mAb in syringes coated with silicon
oil

[140 mg/ml]

102 drops in the range 30 cm − 90 cm (ISTA 3A shock proce-
dure)

Particle counts for mAb1+PS80 exceeded the USP h788i
limit for ≥ 10mm subvisible particles.

Mechanical stress

Siska et al. (2020)40 Ustekinumab
[90 mg/ml]

Real-world observation of priority overnight shipping. Samples
were maintained at 2−8 °C. Up to 40 shock events from 8 G to
36 G.

Different particles formation depending on the presence of
polysorbate 80 in the preparation.

Mechanical stress

Wu et al. (2020)41 mAb
[1 mg/ml]

1 or 2 drops from heights between 0.5 m and 1 m Generation of subvisible protein particles (≥ 2mm) Mechanical stress

Randolph et al. (2015)42 antistreptavidin IgG1 (Amgen, Inc.)
[1 mg/mL or 35 mg/mL]

rhGH [1.75 mg/mL]

1 drop in the range between 25 cm and 1 m No monomer loss or soluble aggregates formation. No sig-
nificant chemical degradation. Increase in subvisible
particles number. Formation of surface adsorbed aggre-
gates.

Mechanical stress

(continued on next page)

E.Cappelletto
etal./JournalofPharm

aceuticalSciences
113

(2024)
2055−

2064
2059



Table 2 (Continued)

Reference
Molecule name (manufacturer)
[Concentration] Stressors description Stability outcomes description

Main stressors
investigated

Crampton et al. (2020)43 ABP980 (Trastuzumab biosimilar)
[0.3 mg/mL and 3.8 mg/mL]

Stored in polyolefin IV bags (diluted in 0.9 % saline), protected
from light for 35 days at 2 °C-8 °C or 30 °C plus 2 days at 30 °
C. Prior to storage, 2 h of transportation simulation and 4
drops (2 before shaking + 2 after shaking) from 46 cm.

Sensitive to chemical degradation at 30 °C storage.
Increase in ≥ 10mm subvisible particles in low-dose
dilution

Temperature
Mechanical stress
In-use handling

Kim et al. (2019)44 CT-P10 (Truxima� , CELLTRION,
Incheon, Republic of Korea)

[1 mg/ml and 4 mg/ml]

IV bags containing DP were prepared and stored under dark 2
−8 °C conditions for up to 6 weeks. Infusion bags were then
incubated in the dark at 25 °C at 60 § 5 % relative humidity
for 24 h

Drug product retain stability, binding affinity, and
potency.

Temperature
In-use handling

Lamanna et al. (2019)45 Rituximab biosimilar (Rixathon/Rixi-
myo)

[1 mg/ml]

DPs in the final month of their 36-month shelf-life were used
and were exposed to 14 days of room temperature and light.
Samples were diluted in saline solution and stored in IV bags
for 14 or 30 days at 5 °C followed by 24 h at room tempera-
ture to simulate product handling.

Concentration, physicochemical and biological properties
remain unchanged. Product remains stable.

Temperature
Light
In-use condition

Kumru et al. (2012)46 mAb
[1 mg/ml, 3.5 mg/ml, 6.5 mg/ml]

DP injected in IV bags containing 0.9 % saline and incubated
horizontally at 100 rpm and 30 °C for up to 6 h. Presence of
different PS20 amount in the IV bag.

Significant loss of monomer, formation of aggregates and
subvisible particles. Trend decreased with added PS20.

Temperature
Mechanical stress

Ikesue et al. (2010)47 Cetuximab [2 mg/ml]
Panitumumab [20 mg/ml; 2.5 mg/ml]

DPs in glass vials and diluted inside bags with 0.9 % saline and
stored at 4 °C for 7 and 14 days.

No change in concentration, color or turbidity were
observed.

In-use handling

Piro et al. (2009)48 Different pediatric drugs for continu-
ous infusion

Stored in syringes or chambers for infusion at 22.5 °C for 72 h None of the syringes or chamber samples demonstrated
contamination, bacterial growth or discoloration after
72 h.

Temperature
In-use handling

Fongaro et al. (2022)49 Ipilimumab (Yervoy, Bristol-Myers
Squibb)

[5 mg/ml; 1 mg/ml]

A. Incubated at 37 °C and 750 rpm up to 45 days.
B. Concentrated and diluted (0,9 % saline, 5 % glucose) PDs irra-
diated with 720 kJ/m2 (200 W hours/m2) in the UV region
(320−400 nm). 10,460 kJ/m2 was applied to maximize the
light stress. Temperature kept at 22 °C.

C. Diluted DP (1 mg/ml and 0,1 mg/ml) in 0.9 % saline or 5 %
glucose solutions stored for 30 days.

A. No change in stability
B. Light induced aggregation and chemical modifications
(oxidation and deamidation) of DP when irradiated with
720 kJ/m2 or 10,460 kJ/m2. Diluted DP is more suscepti-
ble to light induced instability.

C. Presence of aggregation and chemical modifications,
increasing with dilution.

Light Exposure
In-use handling
Mechanical stress
Temperature

Kaiser et al. (2021)50 mAb-A [90 mg/ml]
mAb-B [90 mg/ml]
mAb-C [90 mg/ml]

Glass syringes exposed to visible light at 700, 2200, or 8000 lux
for up to 528 h at 25 °C and 60 % relative humidity.

Increase of 0,65 % in HMW species upon light dosage of
400,000 lux h. Chemical modification of Methionine and
Tryptophan.

Light

Seckute et al. (2020)51 ABP215 (Bevacizumab biosimilar)
[1.4 mg/ml and 16.5 mg/ml]

Diluted into IV bags with 0.9 % saline and stored at 2 °C−8 °C for
35 days, followed by storage at 30 °C for 2 days and IV infu-
sion simulation on day 37. DP was exposed to ambient light
during preparation, sampling and infusion operations.

DP remains physically and chemically stable Temperature
in-use handling

Shah et al. (2018)52 mAb8 (IgG1)
[10 mg/ml]

DP exposed to light as per ICH guidelines (1.2 million lux hours
of visible light, 200 W-h/m2 of UVA light), in clear glass vials,
at 25 °C with different formulations

Formation of aggregates, fragments, and loss of monomer.
Increase in hydrodynamic radius. Decrease in ADCC
activity and biologic efficacy.

Light
Temperature

Schargus et al. (2021)53 Bevacizumab [25 mg/ml]
Aflibercept [40 mg/ml]
Brolucizumab [120 mg/ml]

Tested in original glass vials or repackaged in Luer-Lock syrin-
ges by compounding pharmacy. The samples were stored at
4 °C up to 5 days.

Repackaged bevacizumab shows similar attributes to the
other original products. Subvisible particles exceed
USP<789> guidance. Nanoparticles levels are the high-
est in brolucizumab and seems to correlate to protein
concentration.

In-use handling

Crul et al. (2019)54 Bevacizumab DP repackaged from glass vials to Luer-Lock polycarbonate
syringes from compounding centers and stored at 2−8 °C for
28−37 days.

Particles present in the original glass vials (meet EU crite-
ria). Repackaging increases the number of particles. No
further increase during storage (meet EU criteria).

In-use handling

Maruno et al. (2018)55 Adalimumab [0,1 mg/ml and 10 mg/
ml] Etanercept [1 mg/ml] Inflixi-
mab [1 mg/ml]

Stored in glass syringes (with and without silicone oil coating)
and cycloolefin polymer syringes at 4 °C for 1 week, protected
from light.

Formation of aggregates upon ejection from syringes.
Glass syringes with silicone oil have the highest concen-
tration of protein adsorbed to surfaces.

In-use handling

Schargus et al. (2018)56 Bevacizumab [25 mg/ml]
Aflibercept [40 mg/ml]
Ranibizumab [10 mg/ml]

Tested in original glass vials or repackaged by central phar-
macy.

All samples present particles formation. Bevacizumab
shows higher number of particles. Ranibizumab retains
higher quality

In-use handling

(continued on next page)
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light. It could also be placed in transparent syringes or IV bags,
increasing the exposure to light and so the likelihood of
photodegradation.50,51,77−79 Specific means of mitigation for the pre-
pared DP of very photo-sensitive molecules could be to use colored,
but transparent, covers for e.g. IV bags and infusion lines, but this
would then be described in the site instruction or in the product label
if required.

The Complexity of Clinical Handling and Administration

The recently revised USP chapters <797> and h800i provide
updated guidance in pharmaceutical compounding and hazardous
DP handling. These complement the existing chapters USP h795i and
h825i.13,80−82 The importance of adequate clinical handling guide-
lines to patient safety cannot be understated as it is the “last mile”
prior to administration in patients. Although a DP is manufactured
compliantly following cGMP guidelines, potential compounding and
administration errors can compromise DP efficacy and patient
safety.56,60,68,83,84

To enable safe, accurate, and precise dosage preparations, DP
sponsors perform clinical in-use simulation studies representative of
the clinical process, including experiments to understand and poten-
tially mitigate the impact of the aforementioned stresses such as
transport, light, and temperature excursions. In addition, detailed
steps on DP preparation, including reconstitution and dilution, are
carefully described in the drug marketing submission and on the DP
label. However, unintended stresses can be introduced during the
clinical handling processes.

When the DP arrives at its clinical destination, safe and controlled
unpacking and storage is needed prior to dose preparation and distri-
bution, otherwise risks of exposing the DP to temperature excursion
and undesired light can occur. Once outside the secondary package (i.
e., cardboard box), the DP is aseptically handled by local hospital site
rules as well as national and state laws. The subsequent drug com-
pounding step should be handled by educated and trained professio-
nals in controlled settings, but some at home manipulation may be
necessary. For certain steps that require specific attention (e.g., DP
reconstitution), regulatory guidance to minimize poor practices are
available (as described in Table 1).10,85 The challenges associated
with DP dilutions, handling and storage, and the associated product
impacts are reported in many works.43−52,75,78,86−91

Once the DP is removed from the primary and secondary packag-
ing, potential photo-induced stress can be introduced, as described
previously. Although guidelines on the evaluation of photo stress on
DP for manufacturing exist, many of these guidelines (including ICH)
are limited in scope as they do not provide the necessary nuances on
ambient level of lighting and specific product susceptibility (e.g.,
ADC) at the clinic but instead focus on the risks of extreme product
degradation.9 Clearer guidance on product risks during clinical in-use
is necessary to align expectations between regulators, DP manufac-
turers/sponsors, HCPs, and professionals. Due to the lack of a clear
definition for photo-sensitivity, many DPs are labelled as photo-sen-
sitive, despite the mild ambient lighting condition at a typical phar-
macy and in the clinical setting. In addition, the definition of stability
for clinicians versus DP developers are different, thus raising issues of
unnecessary complexity due to different terminologies such as recon-
stitution time, puncture technique, and storage, infusion, and
beyond-use times. These differences could be reduced through an
alignment between DP manufacturers, regulators, and pharmacy and
health care providers.

In addition, the quality of the DP and the dosing solutions must
meet compatibility acceptance criteria with clinical components such
as spikes, IV bags, IV lines, CSTDs, and syringes, as well as with clinical
diluents (e.g., 0.9 % sodium chloride, 5 % dextrose or lactated ringer).
The dosing solution is particularly susceptible to degradation due to



Figure 2. Example of a user-focused infographic for proper storage and handling of biological medications to protect against damages due to common stresses. Created with Bio-
Render.com.
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the dilution of protective excipients otherwise typically present in
the DP formulation. Furthermore, the potential drug interactions
with surfaces after dilution with clinical diluents can lead to chal-
lenges such as underdosing, aggregation and particle formation.
Examples of surface-induced adsorption or degradation include
exposure to air-liquid interfaces and hydrophobic surfaces such as
common plastic IV bags, filters, lines, and leached silicone
oil.39,55,60,92 Adsorbed denatured proteins can also potentially dis-
lodge, providing seeding events for future degradation.58,93 Finally,
many of the modern biologic modalities are delivered using patient
centric devices such as prefilled syringes, auto-injectors and on-body
devices. Due to the nature of the moving parts in these devices, the
presence of silicone oil and tungsten can impact DP quality, and sub-
visible and visible particle counts.39,92,94 Although silicone oil at the
levels present in these devices is unlikely to introduce toxicological
and immunological risks,95 the complexity of DP delivery devices
requires clear instructions for pharmacists to prepare, for the nurses
to administer, and for the patients to monitor.96

To protect against the undesired events described during clinical
handling, formulations are carefully designed to include stabilizing
excipients such as sugars, buffers, salts and surfactants. Although exci-
pients such as surfactants can offer protection, these chemicals have to
be carefully controlled (e.g., quality level, content at above critical
micelle concentration) because they can also degrade and impact
product stability.93,97 Examples of excipient degradation can include
oxidation that can lead to reactive species generation and
degradation.91,98 In a clinical or home setting, there is also the possibil-
ity to experience combined or cumulative stresses. For example, dos-
ing solutions can be exposed to elevated temperature and mechanical
stress during transport. Case studies have shown that degradation
causes an increase in the subvisible count which can be amplified by
combined stresses.46,47,86,87 It is therefore critical for drug developers
to understand the regional nuances of pharmacy compounding and
handling so they can develop a robust and stable process for DP com-
pounding and administration to ensure patient safety.
Events Prior to Administration by Caregivers and/or Patients

Patients, caregivers, and HCPs play a critical role towards ensuring
that the DP administration process complies with the manufacturing
instructions. Advances in hospital technology result in multiple
routes for the DP to be transported across short distance (e.g. robots,
pneumatic tubes, manual transport, road transport, etc.).64−66,99 Spe-
cial containers and handling instructions should be provided to
ensure that the DP is protected. Several studies have highlighted the
lack of detailed information for patients to maintain DP
quality.37,40,100,101 Thus, training materials, to ensure proper DP han-
dling to maintain stability, should include input from HCPs to ensure
that they understand how to properly educate patients and
caregivers.64,102 Recent publications highlight that patients are more
likely to get their DP instructions from nurses and pharmacists.80

Therefore, an area of focus for RealHOPE is to generate material tar-
geting this professional group to have the greatest impact on the
patients.22,100 Fig. 2 depicts an example of a user-focused info-
graphics that could be used in the clinics as an education tool.

Conclusion

The objectives of this review were to raise regulatory and techni-
cal awareness about post-manufacturing stresses on protein-based
biologics and the potential detrimental impact on the product quality
of the drug product and dosing solutions. The goal was to provide an
overview of the post-manufacturing framework and to create infor-
mative and educational material for all users of biologic medicine to
avoid potential unintended stresses and misuse.

Unlike synthetics, this class of molecule presents unique product
quality attributes that require special considerations, and newer
modalities within biologics with complex stability pathways, such as
lipid nanoparticles, nucleic acids, antibody drug conjugates, and cell
and gene therapy technologies, are being evaluated in the clinic. In
addition, advances in post-manufacturing technologies engender the
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introduction of new processes (e.g., robots, drones) that remain to be
fully assessed in terms of compatibility and safety. To tackle these
challenges, RealHOPE project is encouraging communication and col-
laboration among scientists, healthcare providers, device manufac-
turers, and regulators to develop patient centric processes and help
further bridge the aforementioned gaps to build a true path for safer
handling of protein-based biologics.
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